

Treatment of Microbial Infections with NTBC (OTT ID 1133)

Inventor: Graham Moran, Ph.D., Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Investigator: Sonia Bardy, Ph.D.; Department of Biology, University of Wisconsin-Milwaukee

For further information please contact:

Jessica M. Silvaggi, Ph.D. Licensing Manager UWM Research Foundation 1440 East North Avenue Milwaukee, WI 53202 Tel: 414-906-4654 jessica@uwmrf.org

Current problems with antimicrobials

- Drug resistant fungi and bacteria
- Lack of success with single drug treatments for infection
- Fungi are difficult to treat and infections may recur
- Low spectrum activity of commercial drugs
- Toxicity of current commercial drugs
- Unfavorable interactions of current drugs with other medications
- Decreased investment in creation of novel antimicrobials

Solutions and Advantages of NTBC

- Excellent toxicity profile in humans
- Can be used orally or topically
- Bacterial infections and systemic and topical fungal infections
- Great potential for use in combination with current antimicrobials
- More stable in humans; longer half-life after oral ingestion
- Less time to market; already FDA approved
- Potential for treatment of animal infections in veterinary or livestock practices

WM Market Potential and Intellectual Property

<u>Market</u>

- According to the CDC, over 70% of hospital bacterial infections are resistant to one or more classes of antibacterial drugs
- In the U.S. alone these infections result in \$4.5 billion in excess healthcare costs
- The antibacterial market is expected to reach \$43.8 billion in 2016 (Visiongain)
- Revenues for systemic antifungal drugs are predicted to approach \$6 billion by 2014 (Datamonitor)
- Antibiotic resistance in fungi and bacteria has become increasingly prevalent leading to a lack of success with single drug treatments

Intellectual Property

 A notice of allowance has been received for U.S. Utility Patent Application 12/720,381; Publication <u>US2010-022793 A1</u>

Next Steps

- Describe next experiments that will be carried out...i.e. cell culture testing
- Testing of supernatants
- Further clinical isolates

Funding Required

 \$100,000 in support for one year for a student or post-doc carrying out the experiments and research supplies

Tyrosine catabolism has been adapted to a variety of functions by living organisms

Other Molecules derived from Tyrosine catabolism pathway

- Antibiotics such as vancomycin
- Redox co-factors in mycobacteria and methanogens
- Pigment production in eubacteria such as melanin (from HmgA)
- Redox cofactors in plants

- Originally developed as an herbicide, NTBC is FDA approved to treat Type I Tyrosinemia which is caused by a deficiency of the enzyme fumarylacetoacetate hydrolase
- Fumarylacetoacetate hydrolase catalyzes the final step in the degradation of tyrosine - fumarylacetoacetate to fumarate, acetoacetate and succinate
- NTBC is also a potential therapeutic for alkaptonuria and hawkinsinuria which are also disorders of tyrosine metabolism

A Number of HPPD Inhibitors are Sold as Herbicides

Natural Products - allelopathics

RESEARCH FOUNDATION

LEPTOSPERMONE

Herbicides

Drug

SWEDISH ORPHAN INTERNATIONAL AB

NTBC

SULCOTRIONE CI SO₂CH₃

O

O

CF₃

©UWMRF 2017

SO₂CH₃

- NTBC binds exclusively to the Fe(II) form of HPPD
- NTBC completely suppresses dioxygen reactivity and exhibits biphasic binding kinetics (UV spectroscopy)
- A minimal kinetic model for NTBC association with the HPPD.Fe(II) complex involves an initial weak pre-equilibrium and two metal centered binding events
- HPPD inhibitors bind very tightly to HPPD and HMS

M. Kavana and G. R. Moran (2003) *Biochemistry*, 42, 10238-10245.
J. Brownlee, *et al.* (2004) *Biochemistry* 43, 6370-6377.
M.L Neidig, *et al.* (2005) BBRC 338, 206-214

UWM Evidence that NTBC May be a Treatment for Infection

Observations

- Injury often results in infections that leave pigment in the skin
- Pyomelanin is linked to virulence in bacteria and fungi
- The pathogenic fungus *Cryptococcus neoformans* has been found to melanize in tissue (Nosanchuk et al. 1999. Mol. Cell. Biol. 19(1): 745)

Bacteria and Fungi that produce pyomelanin

- •Cryptococcus neoformans –lung infection; fungal meningitis
- •Aspergillus fumigatus –pathogenic in immuno-compromised people
- •Paracoccidioides brasiliensis -most important South American systemic mycosis
- •Vibrio cholerae –Cholera; acute intestinal infection; through contaminated water
- •Psuedomonas aeruginosa –opportunistic hospital pathogen (cancer, cystic fibrosis, burn patients); forms biofilms
- •Legionella pneumophila –Legionnaires' disease; pneumonia
- •Burkholderia cenocepacia –opportunistic pathogen (cystic fibrosis); plant disease

9

- Paracoccidioides basiliensis is a thermodimorphic fungi associated with systemic mycosis in South America
- Infection occurs through inhalation of the fungal propagules which transform into the yeast parasitic form once in the pulmonary epithelium
- The mycelium to yeast transition is essential for infection
- Studies revealed that 4-HPPD is highly overexpressed during this transition, and NTBC was able to inhibit growth and differentiation of the pathogenic yeast phase of the fungus *in vitro*

Nunes et al. 2005. Eurkaryotic Cell. 4(12): 2115.

Cyclopirox, a Well Known Antifungal, is also an HPPD Inhibitor

- Usnic acid is a natural product HPPD inhibitor from lichen that has been utilized as an antibiotic for bacteria and pathogenic fungi
- Usnic acid is effective against gram positive bacteria including Mycobacterium tuberculosis, Staphylococcus, Streptococcus, and Pneumococcus, as well as some pathogenic fungi

http://en.wikipedia.org/wiki/Usnic_acid

NTBC Decreases Pigment Production in B. cenocepacia

C5424

RESEARCH

NTBC

•NTBC has a significant inhibitory effect on pigment production in B. cenocepacia

•B. cenocepacia is a common pathogen seen in cystic fibrosis and nosocomial infections

•Strains C5424 and MH1J were grown for 24hr •Cultures were centrifuged and pigment in supernatant quantified at OD 597 nm; N=2

40-

20

NOWN

40

20

OHN

100HM

LIVE/DEAD Assay for Viability

(red indicates dead cells)

10 μ M NTBC 100 μ M NTBC Control

*Reduction of pigment production with NTBC treatment is not due to a loss in viability or change in growth kinetics

Reduced Pigment Production Does Not Delay Phagolysosomal Fusion in Macrophages

Bacteria were grown with or without NTBC for 24hr; Macrophages were infected with bacteria and stained with LysoTracker Red-99 which accumulates in lysosomes

- Previous studies have shown that *B. cenocepacia* C5424 and MH1J can delay phagolysosomal fusion
- This property is lost in an *hppD* mutant
- Treatment with NTBC and loss of pigment reduces the ability to delay phagolysosomal fusion in RAW 264.7 macrophages

- In Cystic Fibrosis (CF) lung infections, approximately 5% of *Pseudomonas aeruginosa* isolates produce pyomelanin, an extracellular reddish-brown pigment that provides protection from oxidative stress and contributes to infection persistence
- Pyomelanin is derived from the tyrosine catabolism pathway and is produced when homogentisic acid (HGA) is secreted from the cell, auto-oxidized, and self-polymerized
- (NTBC) irreversibly binds to HppD, which synthesizes HGA
- We propose that NTBC treatment of bacterial cells will inhibit pyomelanin production and increase sensitivity to oxidative stress
- Pyomelanin producing strains of bacteria have been found to be more resistant to oxidative stress, leading to increased persistence of infection

UWM Inhibition of Pyomelanin with NTBC Treatment

Treatment of hmgA::tn with increasing concentrations of NTBC.

Treatment of DWF111 with increasing concentrations of NTBC.

Treatment of laboratory and clinical strains of *P. aeruginosa* with NTBC. DWF111 requires a 3x higher concentration of NTBC than *hmgA::tn* to abolish pyomelanin production.

RESEARCH

UWM NTBC Treatment Increases Sensitivity to H2O2

- Cells were grown overnight in either LB or LB+NTBC, adjusted to the same OD₆₀₀, serial diluted 10-fold, and spotted on LB plates containing the indicated concentrations of H₂O₂.
- PAO1 and *hmgA::tn* strains were incubated 24 hours and DWF111 strains were incubated 45 hours (due to slow colony growth) at 37°C.
- hmgA::tn exhibits an approximately 10-fold increase in sensitivity to H₂O₂ induced oxidative stress with NTBC treatment. DWF111 also exhibits an increase in sensitivity to oxidative stress with NTBC treatment

RESEARCH

UWM NTBC protects Mice Infected with *P. aeruginosa*

Dashed lines = bacteria only Solid lines = bacteria and NTBC

•8-week old C57BL/6 mice were injected intraperitonally with 3.2 x 10⁸ colony forming units of *Psuedomonas aeruginosa*

•Half were treated with 1mg/kg NTBC

•3 of the 4 NTBC treated mice survived while 3 of the 4 untreated mice died within 2 days of infection

Model for the Mode of Action: Enhancing the Immune Response

Macrophage and neutrophil migration

NTBC undermines the ability of the microorganism to survive inside phagocytic vessicle by stemming the production of pyomelanin

- NTBC decreases pigment production in *B. cenocepacia* and *P. aeruginosa* but does not affect bacterial growth and viability
- Data shows that NTBC aids in phagolysosomal fusion in macrophages and protects mice from death by infection with *Pseudomonas aeruginosa*
- NTBC treatment increase sensitivity of pyomelanin producing *P. aeruginosa* to hydrogen peroxide
- Potential use in the treatment of bacterial infections that rely upon pyomelanin to colonize the host - as either an adjunct to other treatments or as stand-alone antibacterial.
- Indications that it may be effective against dimorphic fungi and possibly generally against pathogenic fungi

- Determine the effects of NTBC treatment on biofilms subjected to H₂O₂ oxidative stress.
- Test NTBC treated and untreated cells against additional classes of antibiotics to determine MICs.
- Quantify the amount of HGA produced by *hmgA::tn* and DWF111.
- Determine the cytotoxic effects of pyomelanin against a murine macrophage-like cell line.
- Assay bacterial survival during phagocytosis with and without NTBC treatment.

Treatment of Microbial Infections with NTBC (OTT ID 1133)

For further information please contact:

Jessica M. Silvaggi, Ph.D. Licensing Manager UWM Research Foundation 1440 East North Avenue Milwaukee, WI 53202 Tel: 414-906-4654 jessica@uwmrf.org