

Hepatitis C Helicase Inhibitors (OTT ID 1287)

Inventor: David Frick, Department of Chemistry and Biochemistry UW-Milwaukee; Jeffrey Aube, Frank Schoenen, Brian Blagg, Kevin Frankowski, Kelin Li, University of Kansas

For further information please contact:

Jessica Silvaggi Senior Licensing Manager 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 jsilvaggi@uwmfdn.org

Shortfalls of current therapies for Hepatitis C Virus (HCV)

- Currently used protease inhibitors for HCV (telaprevir and boceprevir) must be used in combination with interferon and ribavirin
- Many patients poorly tolerate these new therapies
- HCV evolves to become resistant to therapies
- Therapies are expensive and are not equally effective against all HCV genotypes

Technological Solution:

- The invention consists of new direct acting antivirals (DAAs) that act against the Hepatitis C virus (HCV) replicon and inhibit the NS3 (non-structural protein 3) helicase activity
- Some helicase inhibitors are highly fluorescent and can be used to stain HCV-infected cells.
- These DAAs are most effective again hard to treat genotypes, like 1b.
- Cell culture experiments show no detectable toxicity
- Helicase inhibitors work together with protease inhibitors to yield synergistic effects
- Helicase inhibitors are active against NS3 encoded by similar viruses, like Dengue virus and West Nile virus.

Road to Commercialization

Market, Intellectual Property, and Partnering

<u>Market</u>

- Hepatitis C in combination with hepatitis B, accounts for about 75% of all liver disease around the world
- 170-200 million people are infected with HCV worldwide with 3-5 million in the USA
- The unmet need in the HCV market is approximately 70%, which equals about \$3 billion
- The global Hepatitis C market was worth approximately \$4.4 billion in in 2009 and is expected to reach \$9.8 billion by 2016

Intellectual Property

• WO Patent 2,013,036,749

Partnering

- Looking for a development partner to:
 - License novel compounds as molecular probes for research and drug discovery

- HCV replicates mainly in the liver, has a wide variety of genotypes, and mutates rapidly
- Once inside the liver cell, HCV takes over some of the cell's machinery to replicate
- HCV needs a functional helicase to replicate in cells
- The HCV helicase,
 - C-terminal domain of non-structural protein 3 (NS3)
 - unwinds double-stranded DNA and RNA
 - N-terminal domain is a protease
- Helicase inhibitors stop the replication of HCV
- Some types of inhibitors that have already been studied are aptamers, antibodies, and small molecules
- Direct acting antiviral drugs (DAAs) are in development which target specific HCV proteins/enzymes
- The Frick lab has identified a compounds that inhibits the NS3 helicase activity

The target: The 'Other' function of NS3

- None in trials
- Most potent helicase inhibitors reported to date act through the nucleic acid
- Non-specific inhibitors are toxic

Protease Inhibitors

- Approved
 - Incivek (Vertex)
 - Victrelis (Merck
- Phase 3
 - TMC435 (Tibotec)
 - BI201335 (Boehringer Ingelheim)
- Phase 2
 - ABT-450 (Abbott)
 - ACH-1625 (Achillion)
 - BIT225 (Biotron)
 - GS-9256 (Gilead)
 - MK-5172 (Merck)
 - Danoprevir (Intermune)
 - Vaniprevir (Merck)

RESEARCH

A Better High-throughput Helicase Assay <u>R E S E A R C H</u> STA Cy5-GCTCCCC **ATP** IBQ-CGAGGCC CCCCAATCGATGAACGGGGGAGC-IBQ 3'-TTTTTT TTTTTTCGAGGGGTTAGCTACTTGCCCCTCG 3'-TTTTTTTTTTTTTTTCGAGGGG⁵^{TAG}G GCTCCCC **F**₁₅ **DNA Binders** 2170 Fo Normalized F₀/F₁₅ 120 Fluorescence 100 100 _80 Cy5-GCT;CC;CC'AA (RFU) nhibition (%) ACTTGCCCCTCG 80 60 40 Cy5 | 40 20 20 0 600 900 0 300 0

- The PI invented a new assay that uses molecular beacons to detect helicase activity
- This molecular beacon helicase assay (MBHA) can simultaneously detect compound DNA interactions and effects on helicase activity

 $F_{0i}/F_{0(-)}$

The inventors use this assay analyze existing inhibitors and discover new ones.

Time (s)

1

0.5

Interference (Foi/Fo(-))

NCI screen revealed 1 hit

827 Compounds

Primary Screen: MBHA (DNA helicase)

50 % inhibition, less than 20% interference

12 Compounds

Counterscreen: FID (DNA Binding)

8% binding

4 compounds RNA Helicase Assay IC₅₀ < 30 μM

1 hit: Thioflavine S

Thioflavine S

- Not a single compound
- A heterogeneous yellow dye
- Related to another heterogeneous yellow dye called primuline

Purification of New Helicase Inhibitors

- Two compounds were purified from Thioflavine S (T1, T2)
- Six compounds were purified from primuline
- Mechanism: Dyes prevent NS3 from binding DNA
- The best compound inhibited helicase with an IC₅₀ of 2 μ M, but it also bound DNA and prevented other proteins from binding DNA

Optimization: more specific analogs

- Over 88 primuline derivatives were synthesized
- DNA binding capacity varies widely but many retain an ability to inhibit helicase
- Most specific compounds are 10-times more potent than previously disclosed helicase inhibitors.

<u>R E S E A R C H</u>

NIH Molecular Probe: ML283

- replacement of the second benzothiazole with amide/phenyl ring linker tolerated
- replacement of the third benzothiazole with amide, urea, thiourea or amine tolerated
- *p*-amino group not necessary for potency diverse substituted phenyl or benzene fused polycyclic moieties afforded active analogs

A Specific Fluorescent Molecular Probe for HCV helicase with promising PK properties

Aque (μg/i	ous solu mL) ª (@	bility pH)	PAMPA Pe (x 10 ⁻⁶ cm/s) ^d	Plasma prot (% Bo	ein binding ound)	Plasma stability ^d	Aqueous	he micro stat	oatic osome oility ^g	hepatic toxicity ^h
Prisma HT buffer ^a	PBS [♭]	assay matrix °	(@ pH)	human 1 μM/10 μM	mouse 1μΜ/10μΜ	human/ mouse	Stability	human	mouse	LC₅₀ (µM)
36.7 (5.0) >60 (6.2) >60 (7.4)	0.12 (7.4)	29.2 (6.5)	0 (5.0) 0.22 (6.2) 0 (7.4)	98/99	98/99	96.6/ 95.0	100	83.57	83.11	>50
^a in aqueous 0.01% v/v fir 7.4. ^e remain h towards Fa	pION's F nal Tweer ing at 3 h 2N-4 imr	Prisma HT but n 20] and 5% nr, ^f in aqueou nortalized hu	ffer, pH's 5.0/6.2/7 v/v final [DMSO], us PBS buffer with man hepatocytes	.4, ^b in aqueou pH 6.5, ^d in ac 50% acetonitril	s PBS, pH 7.4 queous buffer; e, pH 7.4; % r	, ^c 24 mM MC donor compa emaining afte	PPS, 1.25 mM rtment pH's r 48 hr at roo	/ MgCl ₂ , 0.05 5.0/6.2/7.4; a m temperatu	5 mM DTT, 5 µ acceptor comp ire. ⁹ % remair	/g/mL BSA, artment pH ning at 1 hr.

UWM Helicase Inhibitors Disrupt HCV Replicase

Effect of CID50930749 on the cellular location of HCV Replication complexes seen in the replicon-containing Huh7.5/Con1sg-Rluc cells. Cells were fixed, permeabilized, and stained with 9E10 α-NS5A antibody (obtained from Charles Rice, Rockefeller University) and Alexa 546 secondary antibody after 72 hours of:

- A: mock treatment with 0.5% DMSO (red=HCV replicase)
- B: 100 units of interferon (positive control)
- C: 10 μ M primuline (no effect)
- D: 10 μ M of CID50930744 (disrupts complexes)

RESEARCH

UWM Synergy: NS3 protease & helicase Inhibitors

- **CID50930749** decreases HCV RNA levels 15-fold in 10 days ($IC_{50} = 15 \mu M$)
- **CID50930749** treatment enhances the effect of NS3 protease inhibitors
- Low concentrations of **CID50930749** and **telaprevir** are up to 50% more effective than would be expected from the Bliss Independence Model

Modeling Reveals Possible Binding Site

- Some analogs bind in place of RNA to stimulate helicase-catalyzed ATP hydrolysis
- Molecular modeling predicts compounds interact with key conserved residues
- Site directed mutagenesis alters NS3 response to compounds

M Potent inhibition of Dengue Virus NS3

- Most compounds also inhibit NS3 helicase from related viruses, like Dengue virus (DENV), West Nile virus, and yellow fever virus.
- Some compounds inhibit the Dengue virus NS3 helicase much better than they inhibit HCV helicase.
- Some compounds show antiviral activity in assays with DENV replicons.

R E S E A R C H

Peer-Reviewed Research

- Hanson, A. M., Hernandez, J. J., Shadrick, W. R., and Frick, D. N. (2012) Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase, *Methods Enzymol* 511, 463-483.
- Li, K., Frankowski, K. J., Belon, C. A., Neuenswander, B., Ndjomou, J., Hanson, A. M., Shanahan, M. A., Schoenen, F. J., Blagg, B. S., Aube, J., and Frick, D. N. (2012) Optimization of Potent Hepatitis C Virus NS3 Helicase Inhibitors Isolated from the Yellow Dyes Thioflavine S and Primuline, *J. Med. Chem.* 55, 3319-3330.
- Mukherjee, S., Hanson, A. M., Shadrick, W. R., Ndjomou, J., Sweeney, N. L., Hernandez, J. J., Bartczak, D., Li, K., Frankowski, K. J., Heck, J. A., Arnold, L. A., Schoenen, F. J., and Frick, D. N. (2012) Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays, *Nucleic Acids Res.* 40, 8607-8621.
- Ndjomou, J., Kolli, R., Mukherjee, S., Shadrick, W. R., Hanson, A. M., Sweeney, N. L., Bartczak, D., Li, K., Frankowski, K. J., Schoenen, F. J., and Frick, D. N. (2012) Fluorescent primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide hydrolysis and viral replicase formation, *Antiviral Res.* 96, 245-255.
- Shadrick, W. R., Ndjomou, J., Kolli, R., Mukherjee, S., Hanson, A. M., and Frick, D. N. (2013) Discovering New Medicines Targeting Helicases: Challenges and Recent Progress, *J Biomol Screen*, in press.
- Sweeney, N. L., Shadrick, W. R., Mukherjee, S., Li, K., Frankowski, K. J., Schoenen, F. J., and Frick, D. N. (2013) Primuline Derivatives That Mimic RNA To Stimulate Hepatitis C Virus NS3 Helicase-Catalyzed ATP Hydrolysis, *J. Biol. Chem.*, in press

Patent Protection

HCV HELICASE INHIBITORS AND METHODS OF USE THEREOF

J AUBE, B BLAGG, S Jonathan, K FRANKOWSKI, D FRICK, K LI, F SCHOENEN

WO Patent 2,013,036,749

Pub. No.: WO/2013/036749

International Application No.: PCT/US2012/054130

Publication Date: 14.03.2013

International Filing Date: 07.09.2012

(43) International Publication Date 14 March 2013 (14.03.2013) WIPC	DIPCI	(10) International Publication Number WO 2013/036749 A1
(51) (21) (22) (25) (26) (30) (71) (75) (75)	International Patent Classification: AUX 4352 (2006.01) International Application Number: PCT/US2012.05 International Filing Date: 7 September 2012 (07.09.2 Filing Language: E E Publication Language: E E Poblication Language: E E Moriority Data: d1/531,840 7 September 2011 (07.09.2011) Applicants (<i>Brit diesignata</i> States except US: VERSITY OF KANSAS (USUS); 245 Strong Hall, Japhawk Bouleward, Lawrence, KS 66045 (US). North Avenne, Minwalkee, WI 53202 (US). Havettory: and Inventory Applicants (<i>Brit US only</i>): AUBE, 14 Inventory Applicants (<i>Brit US)</i> , 8004 (US); BVENK (USUS); 846 Eata 1000 Road, Lawrence, KS 66049 (US). FRAKK, DVINS); 800 Elfabel Striter, Lawrence 66049 (US). FRICK, David, Norman (USUS); 975 Mald Drive, Lawrence, KS 66049 (US). 1964 Wai 23th Street, Apariment D, Lawrence, KS 6049 (US). SCHOLTN, Frank, John (USUS); 975 Medi Cont, Lawrence, KS 66049 (US).	(81 2012) 2012) 2013) 4150 4150 7150 717 N = 717 N = 7	 Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AQ, AT, AU, AZ, BA, BB, BB, GB, BH, IN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GA, GD, GF, GH, GM, CT HN, HR, HU, DJ, LI, IN, N, JP, KE, KG, KM, KN, KF, KR, KZ, LA, LC, LK, LR, EL, SL, TL, LU, LY, MA, MD NO, NZ, CM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, WW, SC, SD, SE, SG, SK, SL, SM, ST, SY, SY, TH, TT TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA ZM, ZW. Designated States (noless otherwise indicated, for every find of regional protection available): ARHOO (MW, GH GG, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Iterusiani (AM, AZ, IPY, KG, KZ, RU, TT TM, TN, NN, TN, TN, BB, GC, CH, CY, CZ, DE, DK, HE, SJ, FL, RG, GR, RH, HU, HE, IS, TT, LT, LU, LV MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM TB, OAYI (ME, NE, S), TD, TG). Mished: with international search report (Art. 21(3)) before the exploitation in the event of receipt of amandments (Rule 43.20)) with sequence listing part of description (Rule 5.2(a))
(54) (57) prote usefi	Title: HCV HELICASE INHIBITORS AND METHO Abstract: The present invention discloses thioflavine ase activity. Consequently, the compounds of the pres- due as antivital agents. The present invention further rela-	DS OF USI S and prim ent inventio ites to phar	ETHEREOF ulline derivatives which inhibit hepatitis C virus helicase and ni interfere with the life cycle of the hepatitis C virus and are meacuical compositions containing the aforementioned com-

Next Steps

Further investigations

- Resistance selection
- Delivery methods
- Synthesizing and testing of more soluble analogs
- Testing against RNA helicases encoded by other organisms
- Testing against related viruses
- Structural studies using X-ray crystallography
- Structure-based design to enhance specificity
- Combination studies with other direct acting antiviral

Partnering

Looking for a development partner to:

License novel compounds as molecular probes for research and drug discovery

RESEARCH

Hepatitis C Helicase Inhibitors (OTT ID 1287)

For further information please contact:

Jessica Silvaggi Senior Licensing Manager 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 jsilvaggi@uwmfdn.org

©UWMRF 2016