

Heterologous Membrane Protein Production System (OTT ID 1006)

Inventor: M.L.P. Collins, Ph.D., Professor Emeritus, Department of Biology, University of Wisconsin-Milwaukee

> For further information please contact: Jessica M. Silvaggi, Ph.D. Senior Licensing Manager UWM Research Foundation 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 jessica@uwmrf.org

Membrane Protein Production System

Importance

ESEARCH

- Membrane proteins account for 30-50% of the most promising pharmaceutical targets
- Problems
 - Membrane proteins are difficult to synthesize in large quantities
 - Current systems produce small amounts that are often misfolded, inactive, or toxic to host cells
- <u>Solution</u>
 - The bacterium *Rhodospirillum rubrum* forms an intracytoplasmic membrane (ICM) in response to membrane protein synthesis
 - The ICM is non-essential for growth and can incorporate foreign and overexpressed membrane proteins without disrupting normal cellular function
 - Gene expression is regulated in a non-toxic and inexpensive fashion by adjusting oxygen levels
 - Active and correctly folded membrane proteins can be expressed with a high yield

Market Potential

Applications:

- Therapeutic protein production
- Vaccine development
- Antibody production
- Production of high value proteins
- Commercial Protein Expression Kits
 - Crystallographic preparations
 - NMR preparations
 - Ligand/inhibitor assays
 - High through-put screening assay materials
 - Basic research use

Market:

- Global Industry Analysts has predicted that the global market for protein drugs is forecast to reach \$158 billion by 2015.
- The life science tools market has continued to show steady growth over the last few years and is currently valued at more than \$42 billion (BCC Research 2011)
- The market is predicted to grow to \$81 billion by 2016. Protein research-related tools are projected to rise to \$9.1 billion in 2016.

- Issued U.S. Patent 6,680,179
- Issued U.S. Patent 6,951,741
- Issued U.S. Patent 8,481,287
- This technology is available for licensing
- We are looking for partners to aid in finalizing the development of the expression kit into a marketable product for both scientific research and industrial use.
- The kit has been further developed to work using electrocompetent bacterial cells for electroporation of the vector containing the gene of interest.
- We are also looking for partners interested in utilizing the expression system internally for protein production for pharmaceutical products (i.e. vaccines, therapeutics, etc.)

- The kit is has been transferred through material transfer agreements to several universities and companies
- Type of proteins being tested or already tested:
 - Efflux transporter protein (*P. aeruginosa*)
 - Chemokine proteins for testing structure-function relationships
 - Inner mitochondrial membrane transport proteins (human)
 - Rice protein involved in low temperature signaling
 - Magnetosome proteins
 - Human ETF-QO
 - *M. tuberculosis* drug target candidates
 - Integral membrane proteins
 - Anion channel proteins

•Mutants lacking the structural proteins of the photochemical apparatus do not form ICM but retain the capacity to do so when a native or foreign membrane protein is synthesized

Host: R. rubrum H2 (puhA, pufBALM mutant)

Vector: pPUCTerm

Rhodobacter capsulatus puc promoter regulated by oxygen

MscL = 14 kDa *Pseudomonas* transport protein with 2 transmembrane domains aer = aerobic conditions ind = reduced oxygen conditions

•MscL is enriched in the intracytoplasmic membrane fraction compared to the cell envelope

Expression vector control

Recovery and Purification of MscL

R. rubrum vs. E. coli expression

R. rubrum:

- •23.4 mg/L
- •5.6 mg/g cell paste

E. coli C43 (DE3):

•No detectable MscL recovered

using same protein recovery system

•MscL appears to be in inclusion bodies

•Supn is 230,000 x g supernatant fraction

•CMF is crude membrane fraction (230,000 x g pellet)

•SMP is DDM solubilized membrane protein

KcsA in R. rubrum

- •13.7 14.4 mg/L
- •2.19-2.55 mg/g cell paste
- •Purified to homogeneity

KcsA in E. coli C41

- •4.5 mg/L
- •75% pure
- •Ron Viola, personal communication

<u>Protein</u>	mg/L culture	mg/g cell paste	mg/mg crude membrane protein
MscL	22.8 – 23.4	5.53 – 5.60	0.81 – 0.106
KcsA	13.7 – 14.4	2.19 – 2.55	0.042 – 0.081
СусВ	6.57 – 7.36	1.12 – 1.21	0.038 – 0.065

- CycB difference spectrum and heme peroxidase activity
- Purified MscL and KcsA are present as oligomers

- This protein expression kit allows for the expression of foreign membrane proteins where other expression systems may fail
- Potential for efficient, large-scale production of proteins for multiple uses such as vaccines, therapeutics, enzyme therapies and basic research
- Purification of the membrane protein is simple
- Expression of the system is simple and inexpensive using low oxygen levels
- The bacterium *R. rubrum* is easy to work with and non-pathogenic

- Needs a multiple cloning site in vector; currently only 2 sites
- Carry out further side by side expression testing with *E. coli* to evaluate
- Optimize competent cells to be use with kit

Heterologous Membrane Protein Production System (OTT ID# 1006)

Inventor: M.L.P. Collins, Ph.D.

For further information please contact:

Jessica M. Silvaggi, Ph.D. Senior Licensing Manager UWM Research Foundation 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 jessica@uwmrf.org