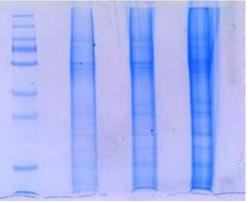


Native SDS PAGE (OTT ID 1313)


Inventors: David Petering, Ph.D., Distinguished Professor, Andrew Nowakowski, and William Wobig, The University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry

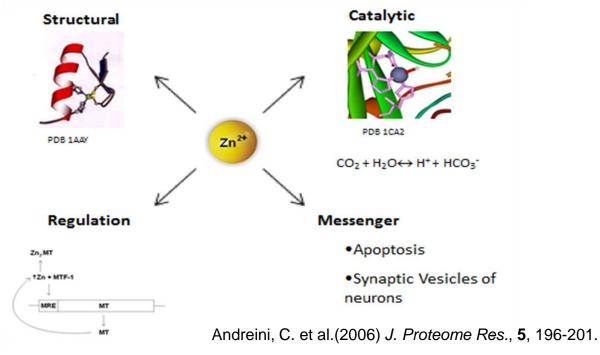
For further information please contact:

Jessica Silvaggi, Ph.D. Senior Licensing Manager 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 Jessica@uwmrf.org

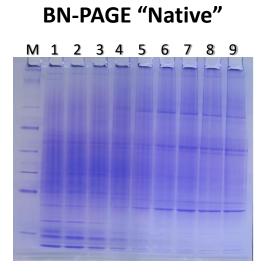
- In traditional SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) proteins are well separated but are denatured
- Structure and function are no longer adequately maintained for carrying out further functional assays
- Current native PAGE methods lead to poor separation and smearing during electrophoresis

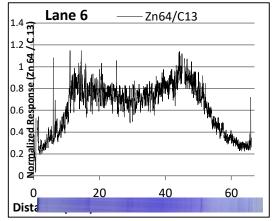
- A new method and buffer system named native SDS-PAGE
- New compositions for running buffer and sample buffer
- Low levels of SDS-PAGE enable very good protein separation and clarity on gels and also maintain the native 3-dimensional conformation and functional activity of proteins
- This invention provides inexpensive and quick to market products for companies already selling PAGE gels and buffer systems
- The ability to better resolve proteins in their native state will support numerous research fields including proteomics work, drug discovery, diagnostics, personalized medicine, protein-based therapeutics, and toxicology

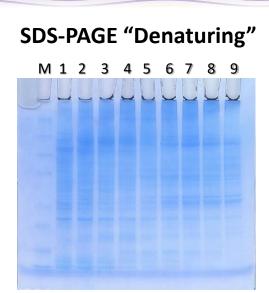
- U.S. Utility Patent Issued:
 - <u>9,709,526</u>
- We are seeking partners for licensing and development of the final product
- The buffers can be used with certain pre-cast gels on the market and adapted to other gel types with further testing
- This product is ideal for research laboratories, biotech, and pharma research exploring functional proteins and enzymes and could be used for numerous applications

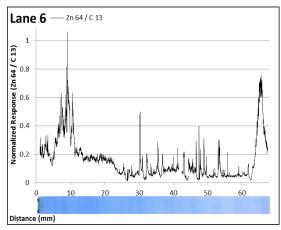

<u>Market</u>

- BCC Research reports that the life science tools and reagents market reached \$48.2 billion in 2015 and is projected to reach \$58 billion by 2020.
- The global proteomics market is predicted to reach \$21.87 billion by 2021 according to MarketsandMarkets Research.
- The market for protein therapeutics is expected to reach \$208 billion by 2020 according to RNCOS Industry Research Solutions.


- The Petering laboratory studies metal-binding proteins and are focusing on zinc in biological systems
- Zinc is the 2nd most abundant transition metal (2-3 grams in the body) and it is estimated that there are approximately 2800 Zn binding proteins and 1000 transcription factors containing Zn



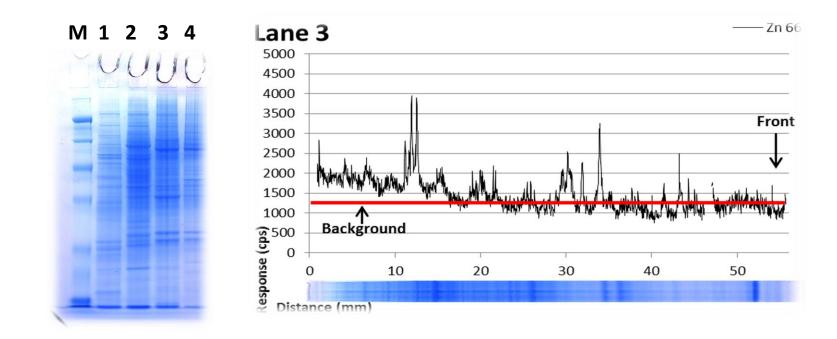

- The ability to isolate, identify, and study the vast array of Zn-proteins is severely limited using available PAGE techniques because SDS-PAGE denatures such proteins, releasing bound Zn
- The inventors developed a new Native SDS-PAGE method to separate proteins of interest and optimized Laser Ablation Inductively Coupled Plasma Mass Spectrometry to visualize Zn associated with proteins on dried PAGE gels


Native PAGE and SDS-PAGE Problems

Poor Resolution

Superior Resolution

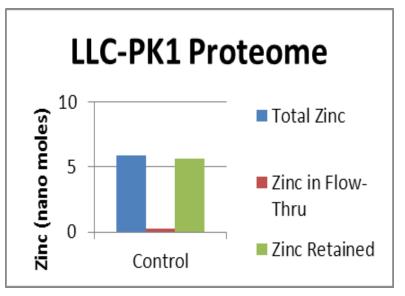
Native PAGE


- Proteins remain native as evident from presence of Coomassie staining associated with Zn
- Resolution is poor such that no single protein band can be identified as a Znprotein

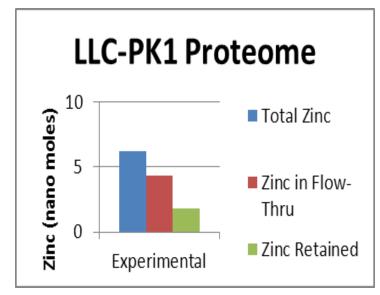
SDS-PAGE

- Denatured Zn proteins as evident from large loss of Zn which migrates at the dye front
- Some proteins retain Zn in specific protein peaks

ESEARCH


- Zn proteins remain native; Zinc remains associated with specific protein bands and not dissociated at the dye front
- The gel shows high resolution of bands

RESEARCH


Stability of LL-CPK₁ proteomic Zn²⁺

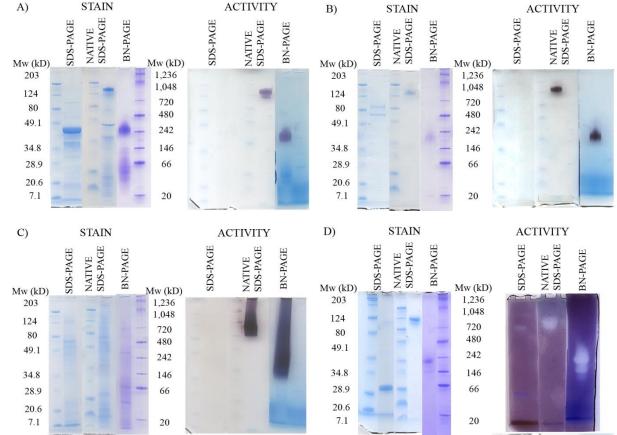
One hour incubation before centrifugal filtration.

NSDS-PAGE

Almost all Zn retained in proteome fraction after incubation with NSDS-PAGE run buffer and filtration

SDS-PAGE

Large majority of Zn is released from Zn-proteins after incubation with SDS-PAGE buffer and filtration



The Native SDS-PAGE buffers and protocol provide excellent resolution while maintaining protein function and structure

SOD = Superoxide dismutase (**Cu,Zn enzyme**) ADH = Alcohol dehydrogenase (**Zn enzyme**) CA = Carbonic anhydrase

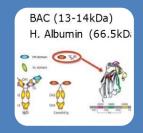
SDS PAGE gel per Invitrogen protocol and with Invitrogen Chemicals	SDS PAGE gel per our modified <u>"Native" protocol</u>	BN PAGE gel per Invitrogen protocol and with Invitrogen Chemicals
Markers 7.5 µg SOD 5.0 µg SOD 2.5 µg ADH 5.0 µg ADH 2.5 µg ADH 7.5 µg CA 5.0 µg CA 2.5 µg CA	Markers 7.5 µg SOD 5.0 µg SOD 7.5 µg ADH 5.0 µg ADH 2.5 µg ADH 7.5 µg CA 5.0 µg CA 2.5 µg CA 2.5 µg CA	Markers 7.5 µg SOD 5.0 µg SOD 2.5 µg SOD 7.5 µg ADH 2.5 µg ADH 2.5 µg CA 5.0 µg CA 2.5 µg CA
	-	
		-

UWM Enzymatic Activity Maintained in NSDS-PAGE

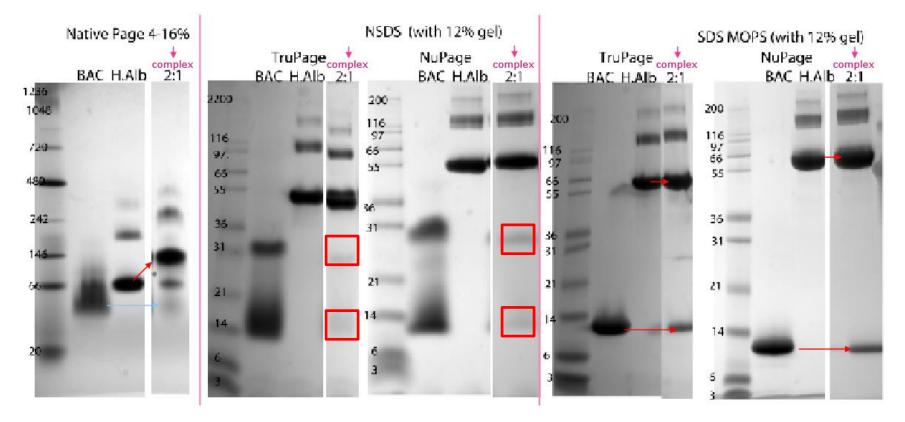
(A) Alcohol dehydrogenase
(B) β-Galactosidase
(C) Alkaline phosphatase (Zn enzyme)
(D) Superoxide dismutase

- SDS-PAGE, NSDS-PAGE, and BN-PAGE were compared for residual enzymatic activity
- SDS-PAGE only showed slight activity for SOD; NSDS- and BN-PAGE retain activity

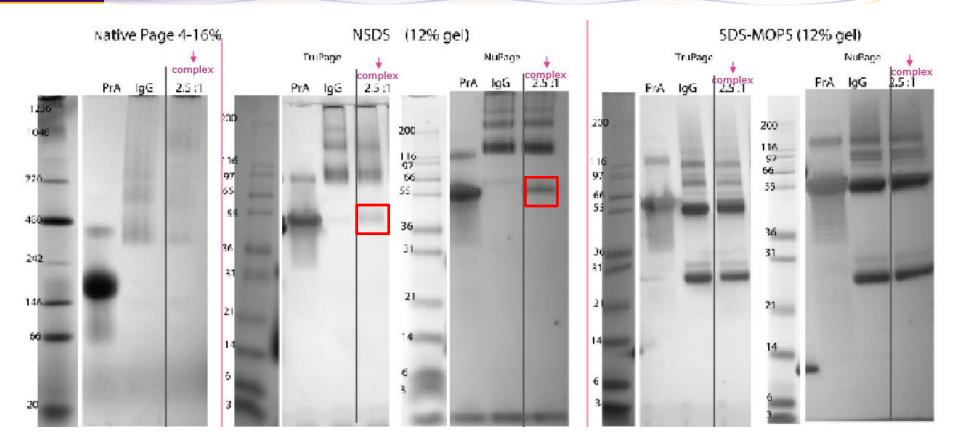
RESEARCH


- 2 protein models were developed to explore migration as:
 - "Complexed" in the Native gel (BN) and in the NSDS system.
 - 2 separated proteins under denaturing conditions.

1. Protein A and Mouse IgG


 Protein A (1.47mM) and Ms IgG (16uM) were diluted in PBS to 8uM. Solution was mixed to different micromolar ratios – from 5:1 to 2:1 of IgG /Protein A

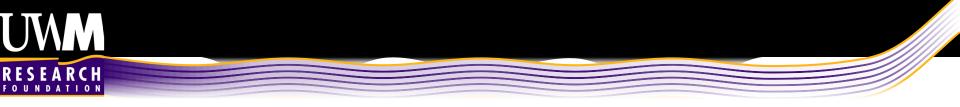
 VHH antibody fragment (0.8mM) and Human Albumin (0.8mM solution) were diluted in PBS and mixed to different micromolar ratios – from 0.75:1 to 3:1 Albumin BAC ligand



- Native and NSDS maintain the complex, while SDS PAGE shows separate proteins with the same band migration
- In the complex lane, there is a lack of BAC as it is in complex with Albumin

R E S E A R C H

Data for Protein A-IgG Protein complex


- Native and NSDS maintain the complex, while SDS PAGE shows separate proteins with the same band migration
- In the complex lane, there is less of Protein A alone as it is bound to IgG

RESEARCH

Advantages:

- Can be performed using commercial pre-casted gels
- Simple technique and requires only one buffer system
- Can retain the functional activity of proteins tested
- Can retain binding of protein complexes
- The neutral pH of the NSDS buffer system has an advantage over the high pH Tris-glycine system for separation of the pH sensitive proteins

Native SDS PAGE (OTT ID 1313)

For further information please contact:

Jessica Silvaggi Senior Licensing Manager 1440 East North Ave. Milwaukee, WI 53202 Tel: 414-906-4654 Jessica@uwmrf.org